翻訳と辞書
Words near each other
・ ConjuChem
・ Conjugacy class
・ Conjugacy class sum
・ Conjugacy problem
・ Conjugacy-closed subgroup
・ Conjugal family
・ Conjugal Lewdness
・ Conjugal love
・ Conjugal Love (novel)
・ Conjugal right
・ Conjugal rights
・ Conjugal Rites
・ Conjugal visit
・ Conjugate (algebra)
・ Conjugate acid
Conjugate beam method
・ Conjugate closure
・ Conjugate coding
・ Conjugate convective heat transfer
・ Conjugate depth
・ Conjugate diameters
・ Conjugate element (field theory)
・ Conjugate eye movement
・ Conjugate focal plane
・ Conjugate Fourier series
・ Conjugate gaze palsy
・ Conjugate gradient method
・ Conjugate index
・ Conjugate points
・ Conjugate prior


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Conjugate beam method : ウィキペディア英語版
Conjugate beam method

Conjugate beam is defined as the imaginary beam with the same dimensions (length) as that of the original beam but load at any point on the conjugate beam is equal to the bending moment at that point divided by EI.〔(【引用サイトリンク】 title=Strength of materials )
The conjugate-beam method is an engineering method to derive the slope and displacement of a beam. The conjugate-beam method was developed by H. Müller-Breslau in 1865. Essentially, it requires the same amount of computation as the moment-area theorems to determine a beam's slope or deflection; however, this method relies only on the principles of statics, so its application will be more familiar.
The basis for the method comes from the similarity of Eq. 1 and Eq 2 to Eq 3 and Eq 4. To show this similarity, these equations are shown below.
=w || Eq.3\;\frac=w
|-
| Eq.2\;\frac=\frac || Eq.4\;\frac=\frac
|}
Integrated, the equations look like this.
\right)dx || v=\int\left()dx
|}
Here the shear V compares with the slope θ, the moment M compares with the displacement v, and the external load w compares with the M/EI diagram. Below is a shear, moment, and deflection diagram. A M/EI diagram is a moment diagram divided by the beam's Young's modulus and moment of inertia.
To make use of this comparison we will now consider a beam having the same length as the real beam, but referred here as the "conjugate beam." The conjugate beam is "loaded" with the M/EI diagram derived from the load on the real beam. From the above comparisons, we can state two theorems related to the conjugate beam:
Theorem 1: The slope at a point in the real beam is numerically equal to the shear at the corresponding point in the conjugate beam.
Theorem 2: The displacement of a point in the real beam is numerically equal to the moment at the corresponding point in the conjugate beam.
==Conjugate-beam supports==

When drawing the conjugate beam it is important that the shear and moment developed at the supports of the conjugate beam account for the corresponding slope and displacement of the real beam at its supports, a consequence of Theorems 1 and 2. For example, as shown below, a pin or roller support at the end of the real beam provides zero displacement, but a non zero slope. Consequently, from Theorems 1 and 2, the conjugate beam must be supported by a pin or a roller, since this support has zero moment but has a shear or end reaction. When the real beam is fixed supported, both the slope and displacement are zero. Here the conjugate beam has a free end, since at this end there is zero shear and zero moment. Corresponding real and conjugate supports are shown below. Note that, as a rule, neglecting axial forces, statically determinate real beams have statically determinate conjugate beams; and statically indeterminate real beams have unstable conjugate beams. Although this occurs, the M/EI loading will provide the necessary "equilibrium" to hold the conjugate beam stable.


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Conjugate beam method」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.